Warn when covariance matrix isWarn when covariance matrix is PSD but ill-conditionedPSD but ill-conditioned#695
Closed
nxd914 wants to merge 1 commit intoPyPortfolio:mainfrom
Closed
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.This suggestion is invalid because no changes were made to the code.Suggestions cannot be applied while the pull request is closed.Suggestions cannot be applied while viewing a subset of changes.Only one suggestion per line can be applied in a batch.Add this suggestion to a batch that can be applied as a single commit.Applying suggestions on deleted lines is not supported.You must change the existing code in this line in order to create a valid suggestion.Outdated suggestions cannot be applied.This suggestion has been applied or marked resolved.Suggestions cannot be applied from pending reviews.Suggestions cannot be applied on multi-line comments.Suggestions cannot be applied while the pull request is queued to merge.Suggestion cannot be applied right now. Please check back later.
This PR adds a RuntimeWarning when a covariance matrix is positive semidefinite
but numerically ill-conditioned, suggesting the use of shrinkage estimators
(Ledoit-Wolf or OAS) for improved numerical stability.
No API or behavioral changes are introduced. A unit test is included.